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Abstract-A theoretical investigation of heat and mass transfer during evaporation in a wet capillary 
structure in contact with a heating wall is presented. The wall has grooves by which the vapour is removed. 
Setting and results of the numerical investigation of the mathematical model (stationary two-dimensional 
boundary problem with a free boundary corresponding to the surface of the interphase transition inside 
the capillary structure) are given. Calculations performed at different heat and hydraulic loads allow one 
to trace the phases of the process evolution : origin and growth of vapour zones (bubbles). The evaporation 

intensity distribution and functional characteristic of the capillary structure have been found. 

1. INTRODUCTION 

THE PROBLEM described below arose from con- 
sideration of heat and mass transfer and evaporation 
processes in heat pipe wicks [ 11. A wick is a layer of a 
capillary structure (CS). The inner side of the wick is 
in contact with a hot wall with a grooved surface (Fig. 
1); its outer side is cooled by a liquid. Vapour is 
removed by the grooves on the surface of the heating 
wall. The capacity of the wick is determined by the 
processes occurring inside the CS near microcontacts 
with the heating wall. These salients act as heat input 
elements (HIE) for the CS. This paper, previously 
presented in part in refs. [24], is devoted to a theor- 
etical investigation of this problem. 

A single microcontact [5] can operate in the fol- 
lowing two typical conditions: (a) when the vapour 
zone is ‘large’ (Fig. 2a), i.e. it exceeds the zone of 
contact with HIE and touches the corner point A, and 
(b) when the vapour zone is ‘small’ (Fig. 2b), that is 
either non-existent or not exceeding the zone of con- 
tact with HIE on the surface of the CS ; in this case 
there is a meniscus of liquid near the corner point A. 

The operating conditions presented in Fig. 2(b) are 
typical for small vapour pressure differences at its 
discharge from the CS. However, high intensity of 
evaporation may be obtained also in those conditions, 
since the meniscus of liquid takes an active part in the 
evaporation. 

An important observation is that heat and mass 
transfer in the structures under consideration is essen- 

tially not one-dimensional, since the heat flux from 
the HIE spreads and curves inside the CS and flows 
out together with the steam, circulating the areas of 
microcontact between the CS and the HIE. 

2. PROBLEM STATEMENT 

This paper considers the boundary problem with 
transmission (conjugation) conditions on a free 
boundary for energy system equations, motion (in 
Darcy form) and continuity in a region, Q, cor- 
responding to the CS cross-section fragment (the rec- 
tangle OBCD in Fig. 3) in the area of its contact with 
one of the HIEs. The unknown curve (free boundary) 
7 divides the region R into two subregions : ‘wet’ !Y 

FIG. 1. The scheme of evaporation in a CS. 
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NOMENCLATURE 
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capillary structure 
heat input element 
intensity of evaporation (evaporation 
rate) 
coefficient of permeability 
radius of meniscus 
temperature 
temperature of the input liquid 
integral average temperature on T, 
= T< - T, thermal action upon the CS 

thermal action, corresponding to the 
transition from 3 ‘small’ to a ‘large’ 
vapour zone 
working fluid motion rate (velocity of 
the heat carrier) 
= pcK/pLi, [cf. equation (2)] 

specific heat capacity 
CS capillaries size 
difference mesh width 
iteration parameter in Richardson 
method 
‘forestalling’ coefficient 
distance between rt and 7 
iteration number of the solution to 
problem (1)-(2 1) 
pressure 
pressure of corner point A (Figs. 3 and 

4) 
pressure jump on y 
saturation pressure 
heat flux 
specific heat of vaporisation 

= (&+I> T,, ,) nth iteration of the 
solution of problem (1)~ (21) 
ith iteration of u 
numerical approximation of u, 
= (n, r) solution of problem (24) (27) 

Cartesian coordinate axes. 

Greek symbols 
r,., r,, TX, r,, ro, r,, r,, r:, r: sections 0f 

the boundary of the region fi u R, (cf. 
Fig. 3) 
region corresponding to the CS cross- 
section fragment 
coefficient of heat convective transfer 
free boundary, a part of the liquid- 
vapour interphase boundary within the 
capillary structure 
distance from the point Q to the 
meniscus surface 
coordinates corresponding to the 
normal and tangent to 1/’ 
decrement of the initial residual 
edge angle of wetting (boundary 
wetting angle) 
coefficient of the effective thermal 
conductivity of the CS 
coefficient of dynamic viscosity 
density of the working fluid flowing in 
the CS 
surface tension factor 
curvilinear strip. 

Superscripts 
+ , - indicate that the region or boundary 

(fi’, Y*, ‘J:) is either wet or dry, 
respectively. 

Subscripts 
H corresponds to heat (n,, &,, rH, TH) 
I corresponds to liquid (r,, p,, I.,) 
n corresponds to the nth iteration 

OH> T,,> li.) 
X corresponds to region at a distance 

from the evaporation section (pX, T, ). 

and ‘dry’ R + The boundary ;’ corresponds to that 
part of the interphase boundary which lies inside the 
CS. 

7.1. Assumptions 
In constructing the mathematical model the fol- 

lowing primary assumptions have been made : the pro- 
cess is stationary ; mass forces changes within the 
region under consideration are small ; no heat sources 
or drains inside the regions & and R+ are available ; 
the CS is isotropic ; there is a local temperature bal- 
ance between the CS and the working fluid contained 
in it; convective heat exchange is negligible in com- 
parison with that occurring by evaporation; vapor is 
incompressible. 

2.2. Differential equutions 
According to the assumptions made, the considered 

equations of energy, motion and continuity are of the 
following form 

i.AT = pt'(V, VT), V = - !Vp, divV = 0, 
I’ 

where V = grad, A = Z2/c’x’+d2/dyZ is the Laplacian 
operator, T is the temperature, V is the working fluid 
motion rate and p is the pressure. The letters p, c and 
or denote, respectively, density, specific heat capacity 
and coefficient of dynamic viscosity of the working 
fluid flowing in the CS; i, is the coefficient of the 
effective thermal conductivity of the CS, containing 
the working fluid [6] ; K is the coefficient of its per- 
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(a) 

FIG. 2. An isolated microcontact of HIE and CS : (a) with 
‘large’ vapour zone, (b) with ‘small’ vapour zone. 

meability. Generally, the values of the coefficients are 
different for the !X and R+ subregions. 

Potentiality and solenoidality of the rate field V 
allow the above system of equations to be written in 
the form of the differential equations system 

Ap=O inn (1) 

AT+a*(Vp,VT) = 0 ino, a = 5: (2) 

for pressure p = p (x.~) and temperature field 
T= T(x,y). 

(b) 
2.3. Boundary and tramfkr conditions 

The equation system (I), (2) is supplemented by the 
boundary conditions at the OBCD rectangle bound- 
ary (Fig. 3) and transmission conditions on the 
boundary y. 

Heat drain on boundary ;’ is considered as a heat 
flux at the jump equivalent to the mass flux flowing 
through 7 : therefore 

1 C7T ,aT 
“~;4-“z.,~ = -Tz: ’ I I 

prK 8p 
(3) 

where r is specific heat of vaporization, cl/&l is the 
differential operator along the normal v to ;:, and 
f 1: - designates the boundary value of the function .f 
on the curve j, from the side of the region Q ’ The 
second condition on the boundary 7 reflects the mass 
flux balance 

$$l,+-$;i; =o. (4) 

The third transmission condition 

PI;- -PI; = PL (5) 

on the boundary ;J allows for the capillary forces in 
the form of the pressure jump across the boundary ^J. 

f 

FIG. 3. The area of calculations corresponding for a fragment 
of a CS cross-section at the point of its contact with the HIE : 
(a) with ‘large’ vapour zone; (b) with ‘small’ vapour zone. 
The regions W and R+ correspond, respectively, to the 
liquid phase and the vapour phase of the heat carrier; the 
region R,, corresponds to an HIE; rH = EF is the section of 
heat input into R,; r, = OA is the section of contact between 
the CS and HIE ; F. is the vertical parts of the boundary of 
R,, free from meniscus, i.e. Ta = OE u AF in case (a) and 
To = OE v M,.F in case (b) ; r: = AM, and r; = AM, are 
bases of the meniscus ; r,, is the vertical lines OD and BC with 
respect to which pressure and temperature are symmetric; 
f, = CD is the section of liquid input into the region R ; r, is 
the evaporation section, i.e. the part of interphase boundary, 
lying on the surface of the CS; r, = BL in case (a) and 
r,. = BM, in case (b); r, = AL is the section of vapour 

discharge from the vapour zone (Fig. 3a). 

This jump is constant and equal to the CS capillary 
head, i.e. p< = (4~7 cos 0)/d, where u is the surface 
tension coefficient, f3 is the edge angle of wetting, and 
d is the CS capillary size. The final condition of trans- 
mission 

TI; -TI;.m =0 (6) 

represents the temperature jump absence on y. The 
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reason for it is that the boundary y lies inside the CS, 
which possesses a significant thermal conductance. 

The first condition to be stated on I-, = OA (Fig. 
3) is 

ap a~=0 onr, 

which reflects the wall’s inpermeability for the mass 
flux. The condition of heat input to region O through 
I, is modelled by introducing the additional region 
R,, corresponding to the HIE tooth cross-section. In 
R, the stationary temperature fluid satisfies the 
Laplace equation 

AT=0 in&. (8) 

With regard to this the heat input into the region Q is 
described by the transmission conditions on I, in the 
form of the temperature jump absence at the transition 
from R, to O, i.e. 

T(X,Y)I,,= +o- T(x,y)l,._-, =0 at(.x,O)Er, (9) 

and heat flux equality, i.e. 

where I, is coefficient of the HIE thermal conduc- 
tivity. On rH = EF (Fig. 3) the boundary condition is 
stated as 

T= T,=const> TX onr,, (11) 

where T, is the vapour temperature at a distance from 
the evaporation section r,. On the vertical parts of 
the edge of the region R, free from meniscus, the 
condition of heat exchange absence is stated as 

aT 
-=0 onr,, 
ax (14 

where IO = OE u AF in the case shown in Fig. 3(a), 
and IO = OE u FM, with the meniscus present (Fig. 
3b). The condition (12) follows from the supposed 
negligibility of the convective heat exchange in com- 
parison with heat exchange during evaporation and 
symmetry of the temperature field with respect to the 
OE segment. 

The conditions of heat and mass transfer on the 
evaporation section I,, i.e. on the section of the inter- 
phase boundary that lies on the surface of the CS (see 
Fig. 3) should be stated in the same way as on the 
boundary via the related transmission conditions, 
with imposition at the same time of boundary con- 
ditions for p and Tat a distance from the section I,. 
Nevertheless, these boundary conditions depend on a 
particular constructive solution for removal of 
vapour, whereas allowing for such particularities 
makes it necessary to consider a three-dimensional 
problem. In order to avoid these complications and 
to remain within the frame of a two-dimensional prob- 
lem, we decided to confine ourselves temporarily to 

consideration of the following heat transfer condition 
on r, : 

aT 
1- = a(T- T_J 

ay 
onr,, (13) 

where c( is the coefficient of convective heat transfer 
for evaporation from the micromenisci building up 
the section I, [6]. The second condition 

(14) 

reflects the heat and mass flux equality. 
At the top section of the region R boundary the 

conditions are stated as 

p = pI = const on r, (15) 
aT pcKap 

-i- = __ --(T-T,) 
ay P ay 

onr,, (16) 

where p, is the given pressure on I,, and T, is the 
temperature of the cooling liquid at a distance from 
I,. Condition (16) presents the heat balance across 
the boundary : heat flux flowing from region R returns 
back to it as enthalpy flowing to region !X. 

At the vertical parts of the boundary of the region 
R designated as I, (Fig. 3) symmetry conditions are 
given : 

2=0 onr 
ax I 

ar 
-=o onr,. 
ax 

(17) 

As to the boundary conditions on the remaining 
sections of the boundary of the region Iz, they depend 
on the case considered : with or without meniscus (Fig. 
3a, b). 

First of all let us consider the case without meniscus. 
Here, on section I, of vapour output from the vapour 
zone the conditions are stated as 

i?T 
-=0 onr, 
ay 

(194 

p=p= =const onr,. (204 

Here px is the pressure of vapour leaving the CS. 
Condition (19a) represents the absence of phase 
changes (transformations) or other heat drains. As it 
was noted, the convective heat exchange is negligible 
compared to that at the adjacent section I,. Condition 
(20a) shows the acoustic effect exceeding the vapour 
outflow rate. 

In the presence of a meniscus the situation becomes 
more complicated. Strictly speaking, one should write 
the differential equations and boundary conditions 
that describe both the process of heat and mass trans- 
fer inside the meniscus and evaporation process from 
its surface and the meniscus shape itself (i.e. the region 
it occupies). Such a problem is of particular interest. 
However, the aim of this paper is to investigate the 
behaviour of vapour inside a CS, so the influence of 
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the meniscus is evaluated only qualitatively here. We 
assume that there is no motion of liquid inside the 
meniscus, while the meniscus itself is symmetric and 
its shape can be described as an arc of the circle with 
the radius 

R = 2o(cos @/(Pm -PA), 

where 0, l3 and pm were defined above, and pa is the 
pressure at the corner point A. These assumptions 
allow us to evaluate the influence of the meniscus on 
evaporation ‘from below’. Actually, the motion of 
liquid within the meniscus will result in some increase 
in evaporation intensity from its surface. 

A meniscus affects the heat and mass transmission 
in two ways. On the one hand it reduces the heat 
release from the boundary I-T = AM,, since evap- 
oration takes place not from this boundary but from 
the meniscus surface, and the heat flux has to over- 
come the thermal resistance of the liquid. On the other 
hand the meniscus takes an active part in evaporation ; 
the liquid seeping into it through IYJ evaporates from 
its surface. The heat fluxes from both r!J and 
I-; = AM,, are responsible for this. At the point Q, 
belonding to I?J’ or ry and situated at the distance 
/AQl from the corner point A 

A$= a&T-T,) forQEr:: 

and 

Lg= a,(T--T,) forQEr;, (19b) 

where alp = (l/a+6,/1,)- ‘, 6, is the distance between 
the point Q and the meniscus surface, and 1, is the 
coefficient of the liquid’s thermal conductivity. In our 
simplified approach the balance of heat and mass 
fluxes during evaporation from the meniscus surface 
is expressed by the following equality : 

G’Ob) 

2.4. Condition specifying the free boundary 
Relations (1)-(20) could be considered as a prop- 

erly (correctly) defined boundary-value problem for 
the elliptical system of equations with transmission 
conditions on y [7] if the boundary y were known 
beforehand. However, the conditions (l)-(20) do not 
specify it. A priori it is not given, it is ‘free’ [8] and can 
be defined only from an additional condition. The 
following equality can be taken as the above condition 
here : 

P Ii.+ = P,(T) I; 1 (21) 

where p?(T) is the saturation pressure which is the 
known to be a strictly increasing function of T. The 
condition (21) is due to the fact that vapour is satu- 
rated and its temperature is close to the temperature of 
the liquid near the boundary y. Therefore, the vapour 

Pressure on the boundary y is equal to saturation 
pressure. 

3. NUMERlCAL ALGORITHM SCHEME 

The problem (1)-(21) has two special features : (1) 
the boundary y is unknown and (2) the transmission 
conditions are to be satisfied on y. 

These two features, the second of which presents 
the greatest difficulty by of solution by numerical 
problem, were dealt with by separating into the algo- 
rithm presented below. Namely, the numerical solu- 
tion of the problem (l)-(21) is reduced to the solution 
of a sequence of problems (l)--(20) for p = p.(.u, y) 
and T = T,(x,y) functions with iteratively defined 
boundaries y., where n > 0. In this case curves y,, con- 
verged to curve y, which does not depend on the initial 
curve y0 (arbitrary enough). Even the ‘curve’ con- 
tracted to a point can be taken as yO. It corresponds 
to the fact that at the initial step R = W. In this case 
the transmission conditions are absent and p = pO(x, y) 
and T = T,(x, y) initial functions are approximated 
by any standard numerical method. Richardson’s 
method with Lebedev-Phinogenov [9] modification 
was used for this purpose. This iteration method of 
the difference equation solving converges fairly 
quickly. The initial residual decreases by l/& times for 
the iteration number of (1 /h) In (1 /E) order, where h is 
the difference mesh width. The most important thing 
is that this method is easily adapted for any geometry 
of the region in which the elliptical boundary-value 
problem is considered. 

Once the boundary yn (n > 0) and pm and T,, the 
corresponding functions, have been found the curve 
y,<+, is found [cf. equation (21)] from relation 

Pn I?;+, = p&T,) hn+, (24 

Although the proof of the existence and uniqueness 
theorem is beyond the scope of this paper, never- 
theless, using the numerical calculations performed, 
one can speak with certainty of both the existence and 
the uniqueness of the curve y.+, being defined by 
relation (22) and of the existence of a unique solution 
to initial problem (1)-(21). 

After the curve y.+ 1 is found one can start looking 
for the solution to problem (1), (2) with transmission 
condition on 7 = y,,+ , This solution is a vector-func- 
tion u = (p,?, ,, T,l+ ,) which can be represented (cf. 
ref. [IO]) both in terms of 

lim lim u; . h-O/+X 

and in terms of 

lim u,, ,-I where U, = ,@?0 u; 

Here h is the difference mesh width, j 2 0 is the iter- 
ation parameter in Richardson method, and the func- 
tion u, is the solution (at thejth iteration,j 2 1) of the 
boundary-value problem in R = R+u n- defined by 
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(l), (2) (7))(20) and 

u, ];t = L; /;.i ) (23) 

where the vector-function c, is found by the method 
described below with respect to the function u,~ , In 
this case as the initial vector-function u0 one can take 
the solution of the boundary-value problem in 
R = R+ u R being dehned by relations (l), (2), (7). 
(20) together with the condition of continuous differ- 
entiability on 13 - $9 i - in+ 1’ 

As to the function c1/, it is defined on the curvilinear 
stripe w,,, which is restricted by the curves y$ lying in 
R’ and at a distance /,Z of order h from 7. In w,, the 
coordinates (11~) corresponding to the normal and 
tangent to 7 are introduced. In these coordinates vec- 
tor-function G,, with components n and t, depending 
upon rl as a parameter, is found explicitly as the solu- 
tion of the following [cf. equations (l)-(6)] boundary 
problem for the system of ordinary differential equa- 
tions with respect to the v E [I- ,,, &,I with transmission 
conditions at v = 0 

711’ = 0, z”+u*n’+ = 0 at 0 < Iv] < h (24) 

n-p,_, = 0 and z-T,_, = 0 

on r; = j(v,n)]v = Sh} (25) 

7c 17+ -71 I;.~ = PC, prK 
T”’ I: 

prK i - --n’ I.,- = 0 
P 

(26) 

(27) 

In equations (24))(27) the prime denotes differ- 
entiation with respect to v. 

The above algorithm has been improved during the 
calculations in two ways. First, instead of relation (23) 
the following condition 

U, j :.+ = k,u, I. = 

was used with specially selected ‘forestalling’ 
coefficients k,. Due to this the convergence rate was 
increased by one order. Second, near the comer point 
A, where the mass flux line closeness is observed (Fig. 
4), the calculations were performed with a smaller 
step. In this case transitions between the small mesh 
zone and that with a larger mesh were inscribed in a 
basic iteration algorithm and performed just as in the 
Schwartz alternating method [I 1, Chap. IV]. 

4. NUMERICAL CALCULATION RESULTS 

The calculations were performed for the CS in the 
form of sintered copper powder with a capillary size 
from n = 4 to 10 pm and a permeability of K = 10 ” 
m. The thermal properties of the heat transfer agent 
were in conformity with those of water, the boundary 
angle of wetting, 8, was assumed to be zero. The 
effective thermal conductivity was assumed to be 
i.=25Wm-‘Km-‘bothinR and in a+. It was 

(a) 

FIG. 4. The isobar and the lines of mass flux atp, = 1.00 x 10’ 
Pa, T r = 90°C in eases: (a) ps = 1.20 x lo5 Pa, 

T,= 123 Cand (b)p, = 1.03x IO’Pa, T,,= 1lo‘C. 

further assumed that the heat transfer agent was sup- 
plied to the CS at the temperature T- ~_ and the pres- 
sure p, which varied correspondingly from 80 to 95 C 
and from 0.80 x 10’ to I .OO x lo5 Pa. Thermal con- 
ductivity of the material in a,, corresponded to that 
of copper : 2, = 380 W mm’ K-‘. The temperature 
r, varied from 105 to 150°C. The pressure of vapour 
pX at its discharge from the CS varied between 
1 .OO x lo5 and 1.20 x 10’ Pa, and its temperature T,, 
was assumed to be 100°C. The coefficient of convective 
transfer s( was assumed to be 3 x lo5 W m -’ K-‘. The 
calculations were performed for the cross-sections of 
the fragments of the CS and HIE : 
OBxOD=200x200 pm’ and OAxOE=70x70 
Ltrn’, respectively. 

The results of the calculations are in part rep- 
resented in Fig. 4 in terms of isobars and the mass flux 
lines, and in Fig. 5 in terms of isotherms and heat flux 
lines. 

A series of calculations for different values of TH 
[see equation (1 l)] allowed us to observe in detail the 
phases of the evolution of the process : the areas where 
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(b) 

FIG. 5. Isotherms and heat flux lines at p, = 1.00 x 10’ Pa, 
T_ x = 90°C in cases (a) pa = 1.20 x IO5 Pa, TH = 123°C and 

(b) pr = 1.03 x 10’ Pa, TH = 110°C. 

the vapour zones in the CS originate, their growth 
and configuration for the increasing heat load, and to 
determine the areas of the most active evaporation. 

It can be seen from Figs. 4 and 5 that for small heat 
loads the vapour zone is localized in the centre of the 
HIE. With the increase of the heat load the dried 
region expands and its base exceeds the area of contact 
of the interior of the CS. This peculiarity is caused by 
that fact that the rate of penetration of heat in the CS 
in the area of the contact turns out to be greater that 
the convective output of heat from the area to the 
place of evaporation. Indeed, the lines of the mass 
flux indicate that the heat transfer agent mostly flows 
around the vapour zone as though it were an obstacle. 
Hence, the convective movement inside the vapour 
zone is rather weak and weakens with the increase in 
size of the zone. 

The character of the evaporation intensity dis- 
tribution 

(a) 

(b) 

FIG. 6. Distribution of evaporation intensity. 

on the interphase boundary also shows (cf. Fig. 6) 
in the weakness of the convective motion inside the 
vapour zone. When meniscus is absent (Fig. 6a), this 
rate is several times smaller on y than in I-,. This 
occurs because the removal of vapour from y through 
the CS is hindered. The lighest intensity is observed in 
the neighbourhood of the point of contact between 
the boundaries y and I-,, where the mass flux lines get 
thicker. The intensity on r, drops abruptly with the 
distance because the heat source becomes remote. 

The distribution of the intensity I in the presence of 
the meniscus is shown in Fig. 6(b), except for the 
distribution of I on the surface of the meniscus itself. 
Still, in Fig. 6(b) the distribution of the values 

is presented which reflect the filtration of liquid 
through I-7 and the output of heat from I-:. These 
values characterize the intensity of evaporation from 
the surface of the meniscus. 
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19 (104W/m2> 

1800 

FIG. 7. Functional characteristics of the CS. Pressure drops 
corresponding to curves I, II, 111 are equal respectively to 

0.03 x 10’. 0.06 x 10’ and 0.20 x 10’ Pa. 

The dependence of the heat flux 

4= s P’K!P(7=T_,)d.u 
I-, P aY 

consumed for evaporation of liquid coming in through 
the boundary T, on the thermal action T*, which is 
calculated as 

T,=TC-T,, 

where Tc is the integral average temperature on I-,, 
an important functional characteristic of the CS. A 
typical series of dependencies of q = q (T,) on the 
value of hydraulic actions p, --p, is shown in Fig. 7. 
The heat flux q first increases as T* grows and then 
drops. The maximum is attained at the value of T, 
close to ri, which corresponds to the transition from 
a ‘small’ to a ‘large’ vapour zone, i.e. to the situation 
when the base of the vapour zone coincides with the 
area of contact between the HlE and CS. In the case 
of small pressure drops p--p, (curves 1 and II) the 
heat flux q at T* < T”, (small vapour zone) is sig- 
nificantly greater than in cases of large pressure drops 
(curve III), because in the former case there occurs 
additional evaporation on the meniscus, while in the 
latter case the meniscus is practically absent. The 
causes of the decrease in q at T, 1 T$ are different 
at different hydraulic loads. When hydraulic loads are 
small, the transition to the regime of T.+ > TO, (large 
vapour zone) results in the destruction of the menis- 
cus, and, therefore, in the elimination of the larger 
component of the total evaporation flux, which is 
characterized by an abrupt drop in the heat flux (the 
dashed lines of the curves I and II). When hydraulic 
loads are large (curve III), the decrease in the heat 
flux under large thermal actions (and, consequently, 
with the growth of distance between the evaporation 
section r, and HIE) is connected with the growth of 

thermal resistance it has to overcome on its way from 
HIE to the evaporation section r,. 

5. CONCLUSION 

Mathematical experiments in a heat pipe evolution 
zone with a capillary structure (CS) made it possible 
to observe in detail the evaporation of the process, the 
growth of the vapour zones (bubbles) inside the CS 
with the increase of the thermal load and to plot the 
corresponding patterns of isotherms and mass flux 
lines. We can assert the following : 

1. There exists an area of stable thermal conditions 
when the interphase boundary enters inside the CS. 
First of all, this occurs at the places of direct contact 
between the CS and the bulges of the heating wall, 
where bubbles begin to form. As the heat load 
increases, the bubbles grow in size and completely 
envelope the microcontacts, and begin to com- 
municate with the grooves of the heating wall. As a 
result, vapour begins to flow out of the bubbles. Fur- 
ther increases in the load lead to the bubbles extending 
into the CS. 

2. The intensity of evaporation inside the bubbles 
is several times lower than on the nearby evaporation 
regions on the surface of the CS. Within each region 
the maximal intensity is observed at the points closest 
to the microcontact. The causes of the low intensity 
of evaporation inside the bubbles are large hydraulic 
losses occurring while vapour moves across the CS. 

3. If there exists a meniscus, and under the assump- 
tion that the liquid in it is motionless, the evaporation 
flux from the meniscus exceeds that from the surface 
of the CS by two to three times. Actually (taking into 
account the movement of the liquid in the meniscus 
and the heat transfer inside it), the difference is even 
greater. Therefore, taking measures in order to create 
the conditions for the existence of a meniscus is quite 
expedient. In particular, it is necessary to diminish the 
pressure drop across the CS. 
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